
BedeDoc Documentation
Release

Mozhgan K. Chimeh

Dec 14, 2020

Contents

1 Site Contents 3
1.1 Hardware . 3
1.2 Usage . 4
1.3 Software . 7
1.4 Profiling . 12
1.5 Useful Training Material . 15

i

ii

BedeDoc Documentation, Release

Bede is a supercomputer (otherwise known as an HPC system) run by the N8 group of research intensive universities
in the north of England, on behalf of EPSRC, and hosted at Durham University.

The system has a specialist architecture, optimised for large memory problems on GPUs and for multi-node multi-gpu
programs. This has a range of applications in Machine Learning and Imaging.

The site encourages user contributions via GitHub. Feel free to add items of concern to the Github issues section.

Please note that the system is still under active development, and so some functionality may temporarily break.

Contents 1

https://github.com/DurhamARC/bede

BedeDoc Documentation, Release

2 Contents

CHAPTER 1

Site Contents

1.1 Hardware

The system is based around the IBM POWER9 CPU and NVIDIA Tesla GPUs. Connectivity within a node is op-
timised by both the CPUs and GPUs being connected to an NVIDIA NVLink 2.0 bus, and outside of a node by a
dual-rail Mellanox EDR InfiniBand interconnect allowing GPUDirect RDMA communications (direct memory trans-
fers to/from GPU memory).

Together with IBM’s software engineering, the POWER9 architecture is uniquely positioned for:

• Large memory GPU use, as the GPUs are able to access main system memory via POWER9’s large model
feature.

• Multi node GPU use, via IBM’s Distributed Deep Learning (DDL) software.

There are:

• 2x “login” nodes, each containing:

– 2x POWER9 CPUs @ 2.4GHz (40 cores total and 4 hardware threads per core), with NVLink 2.0

– 512GB DDR4 RAM

– 4x Tesla V100 32G NVLink 2.0

– 1x Mellanox EDR (100Gbit/s) InfiniBand port

• 32x “gpu” nodes, each containing:

– 2x POWER9 CPUs @ 2.7GHz (32 cores total and 4 hardware threads per core), with NVLink 2.0

– 512GB DDR4 RAM

– 4x Tesla V100 32G NVLink 2.0

– 2x Mellanox EDR (100Gbit/s) InfiniBand ports

• 4x “infer” nodes, each containing:

– 2x POWER9 CPUs @ 2.9GHz (40 cores total and 4 hardware threads per core)

3

BedeDoc Documentation, Release

– 256GB DDR4 RAM

– 4x Tesla T4 16G PCIe

– 1x Mellanox EDR (100Gbit/s) InfiniBand port

The Mellanox EDR InfiniBand interconnect is organised in a 2:1 block fat tree topology. GPUDirect RDMA transfers
are supported on the 32 “gpu” nodes only, as this requires an InfiniBand port per POWER9 CPU socket.

Storage is provided by a 2PB Lustre filesystem capable of reaching 10GB/s read or write performance, supplemented
by an NFS service providing modest home and project directory needs.

1.2 Usage

Bede is running Red Hat Enterprise Linux 7 and access to its computational resources is mediated by the Slurm batch
scheduler.

1.2.1 Registering

Access to the machine is based around projects:

• To register a new project:

– Principle Investigators at an N8 institution should see the advice <here>

– Principle Investigators at other institutions should see the advice <here>

• To create an account to use the system:

– Identify an existing project, or register a new one.

– Create an EPCC SAFE account and login to the SAFE system at: https://safe.epcc.ed.ac.uk/

– Once there, select “Project->Request access” from the web interface and then register against your project

1.2.2 Login

Bede offers an SSH service running on host bede.dur.ac.uk (which fronts the two login nodes, login1.bede.
dur.ac.uk and login2.bede.dur.ac.uk). SSH should be used for all interaction with the machine (including
shell access and file transfer).

The login nodes are shared between all users of the service and therefore should only be used for light interactive work,
for example: downloading and compiling software, editing files, preparing jobs and examining job output. Short test
runs using their CPUs and GPUs are also acceptable.

Most of the computational power of the system is accessed through the batch scheduler, and so demanding applications
should be submitted to it (see “Running Jobs”).

1.2.3 File Storage

Each project has access to the following shared storage:

• Project home directory (/projects/<project>)

– Intended for project files to be backed up (note: backups not currently in place)

– Modest performance

4 Chapter 1. Site Contents

https://safe.epcc.ed.ac.uk/

BedeDoc Documentation, Release

– A default quota of 20GB

• Project Lustre directory (/nobackup/projects/<project>)

– Intended for bulk project files not requiring backup

– Fast performance

– No quota limitations

By default, files created within a project area are readable and writable by all other members of that project.

In addition, each user has:

• Home directory (/users/<user>)

– Intended for per-user configuration files.

– Modest performance

– A default quota of 20GB

Please note that, as access to Bede is driven by project use, no personal data should be stored on the system.

Current utilisation and limits of a user’s home directory can be found by running the quota command. Similar
information can be found for the project home directory using the df -h /projects/<project> command.

To examine how much space is occupied by a project’s Lustre directory, a command of the form du -csh /
nobackup/projects/<project> is required. As du will check each and every file under the specified di-
rectory, this may take a long time to complete. We plan to develop the service and provide this information in a more
responsive format in the future.

1.2.4 Running Jobs

Access beyond the two login node systems should only be done through the Slurm batch scheduler, by packaging your
work into units called jobs.

A job consists of a shell script, called a job submission script, containing the commands that the job will run in
sequence. In addition, some specially formatted comment lines are added to the file, describing how much time and
resources the job needs.

Resources are requested in terms of the type of node, the number of GPUs per node (for each GPU requested, the job
receives 25% of the node’s CPUs and RAM) and the number of nodes required.

There are a number of example job submission scripts below.

Requesting resources

Part of, or an entire node

Example job script for programs written to take advantage of a GPU or multiple GPUs on a single computer:

#!/bin/bash

Generic options:

#SBATCH --account=<project> # Run job under project <project>
#SBATCH --time=1:0:0 # Run for a max of 1 hour

Node resources:
(choose between 1-4 gpus per node)

1.2. Usage 5

BedeDoc Documentation, Release

#SBATCH --partition=gpu # Choose either "gpu" or "infer" node type
#SBATCH --nodes=1 # Resources from a single node
#SBATCH --gres=gpu:1 # One GPU per node (plus 25% of node CPU and RAM per GPU)

Run commands:

nvidia-smi # Display available gpu resources

Place other commands here

echo "end of job"

Multiple nodes (MPI)

Example job script for programs using MPI to take advantage of multiple CPUs/GPUs across one or more machines:

#!/bin/bash

Generic options:

#SBATCH --account=<project> # Run job under project <project>
#SBATCH --time=1:0:0 # Run for a max of 1 hour

Node resources:

#SBATCH --partition=gpu # Choose either "gpu" or "infer" node type
#SBATCH --nodes=2 # Resources from a two nodes
#SBATCH --gres=gpu:4 # Four GPUs per node (plus 100% of node CPU and RAM per
→˓node)

Run commands:

bede-mpirun --bede-par 1ppc <mpi_program>

echo "end of job"

The bede-mpirun command takes both ordinary mpirun arguments and the special --bede-par <distrib>
option, allowing control over how MPI jobs launch, e.g. one MPI rank per CPU core or GPU.

The formal specification of the option is: --bede-par <rank_distrib>[:<thread_distrib>] and it
defaults to 1ppc:1tpt

Where <rank_distrib> can take 1ppn (one process per node), 1ppg (one process per GPU), 1ppc (one process
per CPU core) or 1ppt (one process per CPU thread).

And <thread_distrib> can take 1tpc (set OMP_NUM_THREADS to the number of cores available to each
process), 1tpt (set OMP_NUM_THREADS to the number of hardware threads available to each process) or none (set
OMP_NUM_THREADS=1)

Examples:

- One MPI rank per node:
bede-mpirun --bede-par 1ppn <mpirun_options> <program>

- One MPI rank per gpu:
bede-mpirun --bede-par 1ppg <mpirun_options> <program>

6 Chapter 1. Site Contents

BedeDoc Documentation, Release

- One MPI rank per core:
bede-mpirun --bede-par 1ppc <mpirun_options> <program>

- One MPI rank per hwthread:
bede-mpirun --bede-par 1ppt <mpirun_options> <program>

Multiple nodes (IBM PowerAI DDL)

IBM PowerAI DDL (Distributed Deep Learning) is a method of using the GPUs in more than one node to perform
calculations. Example job script:

#!/bin/bash

Generic options:

#SBATCH --account=<project> # Run job under project <project>
#SBATCH --time=1:0:0 # Run for a max of 1 hour

Node resources:

#SBATCH --partition=gpu # Choose either "gpu" or "infer" node type
#SBATCH --nodes=2 # Resources from a two nodes
#SBATCH --gres=gpu:4 # Four GPUs per node (plus 100% of node CPU and RAM per
→˓node)

Run commands:

(assume IBM Watson Machine Learning Community Edition is installed
in conda environment "wmlce")

conda activate wmlce

bede-ddlrun python $CONDA_PREFIX/ddl-tensorflow/examples/keras/mnist-tf-keras-adv.py

echo "end of job"

1.3 Software

1.3.1 Environments

The default software environment on Bede is called “builder”. This uses the modules system normally used on HPC
systems, but provides a system of intelligent modules. To see a list of what is available, executing the command
module avail.

In this scheme, modules providing access to compilers and libraries examine other modules that are also loaded and
make the most appropriate copy (or “flavour”) of the software available. This minimises the problem of knowing what
modules to choose whilst providing access to all the combinations of how a library can be built.

For example, the following command gives you access to a copy of FFTW 3.3.8 that has been built against GCC 8.4.0:

1.3. Software 7

BedeDoc Documentation, Release

$ module load gcc/8.4.0 fftw/3.3.8
$ which fftw-wisdom
/opt/software/builder/developers/libraries/fftw/3.3.8/1/gcc-8.4.0/bin/fftw-wisdom

If you then load an MPI library, your environment will be automatically updated to point at a copy of FFTW 3.3.8 that
has been built against GCC 8.4.0 and OpenMPI 4.0.5:

$ module load openmpi/4.0.5
$ which fftw-wisdom
/opt/software/builder/developers/libraries/fftw/3.3.8/1/gcc-8.4.0-openmpi-4.0.5/bin/
→˓fftw-wisdom

Similarly, if you then load CUDA, the MPI library will be replaced by one built against it:

$ which mpirun
/opt/software/builder/developers/libraries/openmpi/4.0.5/1/gcc-8.4.0/bin/mpirun
$ module load cuda/10.2.89
$ which mpirun
/opt/software/builder/developers/libraries/openmpi/4.0.5/1/gcc-8.4.0-cuda-10.2.89/bin/
→˓mpirun

Modules follow certain conventions:

• Logs of software builds can be found under /opt/software/builder/logs/.

• Installation recipes for modules can be found under directory /home/builder/builder/.

• Although modules do their best to configure your environment so that you can use the software, it is sometimes
useful to know where the software is installed on disk. This is provided by the <NAME>_HOME environment
variable, e.g. if the gcc/8.4.0 module is loaded, environment variable GCC_HOME points to the directory
containing its files.

• Software provided by modules sometimes use other modules for their functionality. It is not normally required
to explicitly load these prerequisites but it can be useful, for example to mirror R’s buld environment when
installing an R library. Where this occurs, a list of modules is provided by the <NAME>_BUILD_MODULES
environment variable, e.g. the r module sets environment variable R_BUILD_MODULES.

Software can be built on top of these modules in the following ways:

• Traditional - loading appropriate modules, manually unpacking, configuring, building and installing the new
software (e.g. ./configure; make; make install)

• Spack - automated method of installing software. Spack will automatically find the multiple flavours (or variants,
in spack-speak) of libraries provided by builder, minimising the number of packages needing to be built.

With Builder and Spack, the opportunity arises for a project to inherit and supplement software, and for users to then
inherit and supplement that in turn. In this way, the centre can concentrate on providing core software of general use
and allow projects and users to concentrate on specialist software elements that support their work.

In addition, there are two other types of software environment on Bede, which are not currently recommended:

• The vendor-supplied set of modules that originally came with the machine. To use these, execute: echo ocf
> ~/.application_environment and then login again.

• Easybuild - an automated method of installing software, rival to Spack. To use this, execute: echo builder
> ~/.application_environment and then login again.

In both cases, executing rm ~/.application_environment and login again will return you to the default
software environment.

8 Chapter 1. Site Contents

https://spack.readthedocs.io/

BedeDoc Documentation, Release

Spack

Spack can be used to extend the installed software on the system, without requiring specialist knowledge on how to
build particular pieces of software. Documentation for the project is here: https://spack.readthedocs.io/

To install spack, execute the following and then login again:

$ git clone https://github.com/spack/spack.git $HOME/spack

$ echo 'export SPACK_ROOT=$HOME/spack' >> ~/.bash_profile
$ echo 'source $SPACK_ROOT/share/spack/setup-env.sh' >> ~/.bash_profile

Example usage, installing an MPI aware, GPU version of gromacs and than loading it into your environment to use
(once built, execute spack load gromacs before using):

$ spack install gromacs +mpi +cuda

Other useful spack commands: * spack find - show what packages have been installed * spack list - show
what packages spack knows how to build * spack compilers - show what compilers spack can use * spack
info <package> - details about a package, and the different ways it can be built * spack spec <package>
- what pieces of software a package depends on

If a project wishes to create a spack installation, for example under /projects/<project>/spack and you
would like an easy way for your users to add it to their environment, please contact us and we can make a module.

If you are a user who wishes to supplement your project’s spack installation, follow the installation instructions above
and then tell it where your project’s copy of spack is:

cat > $SPACK_ROOT/etc/spack/upstreams.yaml <<EOF
upstreams:

spack-central:
install_tree: /projects/<project>/spack
modules:

tcl: /projects/<project>/spack/share/spack/modules
EOF

Easybuild

Not currently recommended.

The central Easybuild modules are available when a user executes the following command and then logs in again:

echo easybuild > ~/.application_environment

A user can create their own Easybuild installation to supplement (or override) the packages provided by the central
install by:

echo 'export EASYBUILD_INSTALLPATH=$HOME/eb' >> ~/.bash_profile
echo 'export EASYBUILD_BUILDPATH=/tmp' >> ~/.bash_profile
echo 'export EASYBUILD_MODULES_TOOL=Lmod' >> ~/.bash_profile
echo 'export EASYBUILD_PARALLEL=8' >> ~/.bash_profile
echo 'export MODULEPATH=$HOME/eb/modules/all:$MODULEPATH' >> ~/.bash_profile

Login again, and then:

wget https://raw.githubusercontent.com/easybuilders/easybuild-framework/develop/
→˓easybuild/scripts/bootstrap_eb.py
python bootstrap_eb.py $EASYBUILD_INSTALLPATH

1.3. Software 9

https://spack.readthedocs.io/

BedeDoc Documentation, Release

Verify install by checking sensible output from:

module avail # should show an EasyBuild module under user's home directory
module load EasyBuild
which eb # should show a path under the user's home directory

Software can now be installed into the new Easybuild area using eb <package>

Project Easybuild installations can be created using a similar method. In this case, a central module to add the project’s
modules to a user’s environment is helpful, and can be done on request.

1.3.2 Compilers

All compiler modules set the CC, CXX, FC, F90 environment variables to appropriate values. These are commonly
used by tools such as cmake and autoconf, so that by loading a compiler module its compilers are used by default.

This can also be done in your own build scripts and make files. e.g.

module load gcc
$CC -o myprog myprog.c

GCC

Note that the default GCC provided by Red Hat Enterprise Linux 7 (4.8.5) is quite old, will not optimise for the
POWER9 processor (either use POWER8 tuning options or use a later compiler), and does not have CUDA/GPU
offload support compiled in. The module gcc/native has been provided to point to this copy of GCC.

The copies of GCC available as modules have been compiled with CUDA offload support:

module load gcc/10.2.0

LLVM

LLVM has been provided for use on the system by the llvm module. It has been built with CUDA GPU offloading
support, allowing OpenMP regions to run on a GPU using the target directive.

Note that, as from LLVM 11.0.0, it provides a Fortran compiler called flang. Although this has been compiled and
can be used for experimentation, it is still immature and ultimately relies on gfortran for its code generation. The
lvm/11.0.0 module therefore defaults to using the operating system provided gfortran, instead.

1.3.3 BLAS/LAPACK

The following numerical libraries provide optimised CPU implementations of BLAS and LAPACK on the system:

• ESSL (IBM Engineering and Scientific Subroutine Library)

• OpenBLAS

The modules for each of these libraries provide some convenience environment variables: N8CIR_LINALG_CFLAGS
contains the compiler arguments to link BLAS and LAPACK to C code; N8CIR_LINALG_FFLAGS contains the same
to link to Fortran. When used with variables such as CC, commands to build software can become entirely independent
of what compilers and numerical libraries you have loaded, e.g.

10 Chapter 1. Site Contents

BedeDoc Documentation, Release

module load gcc essl/6.2
$CC -o myprog myprog.c $N8CIR_LINALG_CFLAGS

1.3.4 MPI

The main supported MPI on the system is OpenMPI.

For access to a cuda-enabled MPI: module load gcc cuda openmpi

We commit to the following convention for all MPIs we provide as modules:

• The wrapper to compile C programs is called mpicc

• The wrapper to compile C++ programs is called mpicxx

• The wrapper to compile Fortran programs is called mpif90

1.3.5 HDF5

When loaded in conjunction with an MPI module such as openmpi, the hdf5 module provides both the serial and
parallel versions of the library. The parallel functionality relies on a technology called MPI-IO, which is currently
subject to the following known issue on Bede:

• HDF5 does not pass all of its parallel tests with OpenMPI 4.x. If you are using this MPI and your application
continues to run but does not return from a call to the HDF5 library, you may have hit a similar issue. The
current workaround is to instruct OpenMPI to use an alternative MPI-IO implementation with the command:
export OMPI_MCA_io=ompio The trade off is that, in some areas, this alternative is extremely slow and
so should be used with caution.

1.3.6 NetCDF

The netcdf module provides the C, C++ and Fortran bindings for this file format library. When an MPI module is
loaded, parallel support is enabled through the PnetCDF and HDF5 libraries.

Use of NetCDF’s parallel functionality can use HDF5, and so is subject to its known issues on Bede (see above).

1.3.7 IBM PowerAI and Watson Machine Learning Community Edition (wmlce)

IBM have done a lot of work to port common Machine Learning tools to the POWER9 system, and to take advantage
of the GPUs abililty to directly access main system memory on the POWER9 architecture using its “Large Model
Support”.

This has been packaged up into what is variously known as IBM Watson Machine Learning Community Edition
(wmlce) or the catchier name PowerAI.

Documentation on wmlce can be found here: https://www.ibm.com/support/pages/get-started-ibm-wml-ce

Installation is via the anaconda package management tool. First install anaconda (can be quite large - so using the
/nobackup area):

cd /nobackup/projects/<project>

wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-ppc64le.sh
sh Miniconda3-latest-Linux-ppc64le.sh
conda update conda

1.3. Software 11

https://www.ibm.com/support/pages/get-started-ibm-wml-ce

BedeDoc Documentation, Release

conda config --set channel_priority strict
conda config --prepend channels https://public.dhe.ibm.com/ibmdl/export/pub/software/
→˓server/ibm-ai/conda/
conda create --name wmlce

Then login again and install wmlce (GPU version by default - substitute powerai-cpu for powerai for the CPU
version):

conda activate wmlce
conda install powerai ipython

Running ipython on the login node will then allow you to experiment with this feature using an interactive copy
of Python and the GPUs on the login node. Demanding work should be packaged into a job and launched with the
python command.

If a single node with 4 GPUs and 512GB RAM isn’t enough, the Distributed Deep Learning feature of PowerAI should
allow you to write code that can take advantage of multiple nodes.

1.4 Profiling

1.4.1 NVIDIA Profiling Tools

HPC systems typically favour batch jobs rather than interactive jobs for improved utilsation of resources. The Nvidia
profiling tools can all be used to capture all required via the command line, which can then be interrogated using the
GUI tools locally.

Nsight Systems and Nsight Compute are the modern Nvidia profiling tools, introduced with CUDA 10.0 supporting
Pascal+ and Volta+ respectivley.

The NVIDIA Visual Profiler is the legacy profiling tool, with full support for GPUs up to pascal (SM < 75), partial
support for Turing (SM 75 and no support for Ampere (SM80).

Compiler settings for profiling

Applications compiled with nvcc should pass -lineinfo (or --generate-line-info) to include source-level
profile information.

Additionally, NVIDIA Tools Extension SDK can be used to enhance these profiling tools.

Nsight Systems and Nsight Compute

Note:

• Nsight Systems supports Pascal and above (SM 60+)

• Nsight Compute supports Volta and aboce (SM 70+)

Generate an application timeline with Nsight Systems CLI (nsys):

nsys profile -o timeline ./myapplication

12 Chapter 1. Site Contents

https://docs.nvidia.com/gameworks/index.html#gameworkslibrary/nvtx/nvidia_tools_extension_library_nvtx.htm

BedeDoc Documentation, Release

Use the --trace argument to specify which APIs should be traced. See the nsys profiling command switch options
for further information.

nsys profile -o timeline --trace cuda,nvtx,osrt,openacc ./myapplication <arguments>

Note: On Bede (Power9) the --trace option osrt can lead to SIGILL errors. As this is a default, consider
passing --trace cuda,nvtx as an alternative minimum.

Once this file has been downloaded to your local machine, it can be opened in nsys-ui/nsight-sys via File >
Open > timeline.qdrep:

Fine-grained kernel profile information can be captured using remote Nsight Compute CLI
(ncu/nv-nsight-cu-cli):

ncu -o profile --set full ./myapplication <arguments>

Note: ncu is available since CUDA 11.0.194, and Nsight Compute 2020.1.1. For older versions of CUDA use
nv-nsight-cu-cli (if Nsight Compute is installed).

This will capture the full set of available metrics, to populate all sections of the Nsight Compute GUI, however this
can lead to very long run times to capture all the information.

For long running applications, it may be favourable to capture a smaller set of metrics using the --set, --section
and --metrics flags as described in the Nsight Comptue Profile Command Line Options table.

The scope of the section being profiled can also be reduced using NVTX Filtering; or by targetting specific kernels
using --kernel-id, --kernel-regex and/or --launch-skip see the CLI docs for more information).

Once the .ncu-rep file has been downloaded locally, it can be imported into local Nsight CUDA GUI
ncu-ui/nv-nsight-cu via:

ncu-ui profile.ncu-rep

Or File > Open > profile.ncu-rep, or Drag profile.ncu-rep into the nv-nsight-cu window.

Note: Older versions of Nsight Compute (CUDA < 11.0.194) used nv-nsight-cu rather than ncu-ui.

Note: Older versions of Nsight Compute generated .nsight-cuprof-report files, instead of .ncu-rep files.

More info

• Nsight Systems

• Nsight Compute

• OLCF: Nsight Systems Tutorial

• OLCF: Nsight Compute Tutorial

Use the following Nsight report files to follow the tutorial.

1.4. Profiling 13

https://docs.nvidia.com/nsight-systems/profiling/index.html#cli-profile-command-switch-options
https://docs.nvidia.com/nsight-compute/NsightComputeCli/index.html#command-line-options-profile
https://docs.nvidia.com/nsight-compute/NsightComputeCli/index.html#nvtx-filtering
https://docs.nvidia.com/nsight-compute/NsightComputeCli/index.html#command-line-options-profile
https://docs.nvidia.com/nsight-systems/
https://docs.nvidia.com/nsight-compute/
https://vimeo.com/398838139
https://vimeo.com/398929189
https://drive.google.com/open?id=133a90SIupysHfbO3mlyfXfaEivCyV1EP

BedeDoc Documentation, Release

Cluster Modules

• module load nvidia/20.5

Visual Profiler (legacy)

Note:

• Nvprof does not support CUDA kernel profiling for Turing GPUs (SM75)

• Nvprof does not support Ampere GPUs (SM80+)

Application timelines can be generated using nvprof:

nvprof -o timeline.nvprof ./myapplication

Fine-grained kernel profile information can be genereted remotely using nvprof:

nvprof --analysis-metrics -o analysis.nvprof ./myapplication

This captuires the full set of metrics required to complete the guided analysis, and may take a (very long) while. Large
applications request fewer metrics (via --metrics), fewer events (via --events) or target specific kernels (via
--kernels). See the nvprof command line options for further information.

Once these files are downloaded to your local machine, Import them into the Visual Profiler GUI (nvvp)

• File > Import

• Select Nvprof

• Select Single process

• Select timeline.nvvp for Timeline data file

• Add analysis.nvprof to Event/Metric data files

Documentation

• Nvprof Documentation

Cluster Modules

• module load cuda/10.1

• module load cuda/10.2

• module load nvidia/20.5

1.4.2 NVIDIA Tools Extension

NVIDIA Tools Extension (NVTX) is a C-based API for annotating events and ranges in applications. These markers
and ranges can be used to increase the usability of the NVIDIA profiling tools.

• For CUDA >= 10.0, NVTX version 3 is distributed as a header only library.

14 Chapter 1. Site Contents

https://docs.nvidia.com/cuda/profiler-users-guide/index.html
https://docs.nvidia.com/cuda/profiler-users-guide/index.html

BedeDoc Documentation, Release

• For CUDA < 10.0, NVTX is distributed as a shared library.

The location of the headers and shared libraries may vary between Operating Systems, and CUDA installation (i.e.
CUDA toolkit, PGI compilers or HPC SDK).

The NVIDIA Developer blog contains several posts on using NVTX:

• Generate Custom Application Profile Timelines with NVTX (Jiri Kraus)

• Track MPI Calls In The NVIDIA Visual Profiler (Jeff Larkin)

• Customize CUDA Fortran Profiling with NVTX (Massimiliano Fatica)

Custom CMake find_package modules can be written to enable use within Cmake e.g. ptheywood/cuda-cmake-
NVTX on GitHub

Documentation

• NVTX Documentation

• NVTX 3 on GitHub

1.5 Useful Training Material

The following list is a useful catalogue of training material.

A list of useful training material is also available on the gpuhackathons site:

• GPUHackathon Resources webapge

1.5.1 Profiling Material

• OLCF: Nsight Systems Tutorial

• OLCF: Nsight Compute Tutorial

Use the following Nsight report files to follow the tutorial.

1.5.2 General Training Material

• OpenACC Online Course (NVIDIA)

• NVIDIA OpenACC Advanced Training Material Container

• CUDA training at Oakridge (slides and lecture recording)

• Sheffield One or Two Day Introduction to CUDA Course (slides and labs)

• Sheffield Parallel Computing with GPUs taught module (slides, labs, lecture recordings)

1.5. Useful Training Material 15

https://developer.nvidia.com/blog/cuda-pro-tip-generate-custom-application-profile-timelines-nvtx/
https://developer.nvidia.com/blog/gpu-pro-tip-track-mpi-calls-nvidia-visual-profiler/
https://developer.nvidia.com/blog/customize-cuda-fortran-profiling-nvtx/
https://github.com/ptheywood/cuda-cmake-nvtx
https://github.com/ptheywood/cuda-cmake-nvtx
https://docs.nvidia.com/gameworks/index.html#gameworkslibrary/nvtx/nvidia_tools_extension_library_nvtx.htm
https://github.com/NVIDIA/NVTX
https://www.gpuhackathons.org/technical-resources
https://vimeo.com/398838139
https://vimeo.com/398929189
https://drive.google.com/open?id=133a90SIupysHfbO3mlyfXfaEivCyV1EP
https://www.openacc.org/events/openacc-online-course-2018
https://ngc.nvidia.com/catalog/containers/hpc:openacc-training-materials
https://www.olcf.ornl.gov/cuda-training-series/
http://gpucomputing.shef.ac.uk/education/sheffield_onedaycuda/
http://gpucomputing.shef.ac.uk/education/cuda/
https://paulrichmond.shef.ac.uk/teaching/COM4521/

	Site Contents
	Hardware
	Usage
	Software
	Profiling
	Useful Training Material

